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A model for the determination of the shape of the magnetopause is developed that permits 
the inclusion of cases where the solar wind is directed obliquely toward the geomagnetic 
dipole axis. The solar wind is assumed to have no motions perpendicular to its (constant) 
velocity vector (zero temperature approximation) and to be free of magnetic fields. The re- 
gion within the magnetopause is characterized as having only one magnetic source and as being 
free of plasma. The procedure used here is in many ways similar to the self-consistent field 
method developed by Mead and Beard to calculate the shape of the magnetopause when the 
solar wind flow is perpendicular to the dipole axis. They were able to find the surface shape 
(for perpendicular incidence) a t  one point a t  a time. In the present study, however, it is 
necessary to determine the position of the surface at  several points a t  a time. The geocentric 
distance to the subsolar point is found to be largest for perpendicular incidence of the solar 
wind on the dipole axis. The cross sections of the tail of the magnetopause given by the 
model are not cylindrical but elongated in the direction perpendicular to the ecliptic plane. 
Generally, the boundary is very dependent upon the wind-dipole angle in the region of the 
neutral points but exhibits very little dependence on this angle in 'equatorial' regions. 

INTRODUCTION 
Various attempts have been made to deter- 

mine the shape of the magnetopause [Beard, 
1960; Spreiter and Briggs, 1961; Slutz, 1962; 
Midgley and Davis, 1963; Mead and Beard, 
19641, which in the closed magnetosphere model 
is the boundary between the solar wind and the 
earth's magnetic field. All of the closed mag- 
netosphere models employ similar assumptions. 
The solar wind is treated as having no random 
thermal motion (except by Slutz), no associated 
magnetic field, and as having infinite electrical 
conductivity. The region within the magneto- 
pause is assumed to be free of plasma and to 
have the earth's dipole field as its only mag- 
netic source. Because of these assumptions none 
of the models predicts the formation of the 
bow shock or the internal features observed 
in the tail of the magnetosphere. In  spite of 
these limitations the models have been used in 
many investigations where it is necessary to 
know the distribution of the magnetic field 

1 Based on a portion of a dissertation submitted 
in partial satisfaction of the requirements for the 
Ph.D. at the University of California, Los Angeles. 
2 Present address : Space Sciences Department, 

McDonnell Douglas Astronautics Company- 
Western Division, Santa Monica, California 90406. 

within the cavity [Speiser, 1969; Reid and 
Sauer, 1967; Roederer, 19681. A further limi- 
tation in the use of these models is that they 
treat the case of perpendicular incidence of 
the solar wind upon the earth's dipole field. In 
reality the earth's rotation axis makes an angle 
of 23.5" with the normal to the ecliptic plane. 
The dipole axis is inclined to the rotation axis 
by over ll", thus making the angle between the 
dipole and the solar wind direction vary an- 
nually between 55" and 125". It is the purpose 
of this paper to remove the last restriction and 
determine the magnetopause shape for this 
range of angles. 

THE SELF-CONSISTENT FIELD MODEL OF 
MEAD AND BEARD 

It was found that the self-consistent field 
method of Mead and Beard [1964] could be 
most easily adapted to make this extension. 
Their method begins with the pressure balance 
equation 

which equates the kinetic pressure of the solar 
wind with the energy density (pressure) of the 
total magnetic field just inside of the mag- 
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netopause, BT. Here n is the particle pair density 
of the solar wind, m is the proton electron pair 
mass, v is the speed of the wind, n is the outward 
unit vector normal to the magnetopause surface, 
and v is a unit vector in the solar wind direction. 
In terms of the coordinate system shown in 
Figure 1, n and v are given as follows 

where 

and r = R(0, 4) is the functional form of the 
surface and 

v = -COS + sin ee (3) 

To guarantee that BT is parallel to the magneto- 
pause surface, Mead and Beard suggested that 
lBTl be replaced by In x BTI. Using this value 
for lBTl and substituting equations 2 and 3 into 
equation 1 yields a more detailed form of the 
pressure balance equation 

To  obtain the shape of the magnetopause, equa- 
tion 4 is solved for r at a 5" by 5" grid of 8, 4 
values. To do this, however, it is necessary that 
all quantities appearing in the pressure balance 
equation must be either known constants or 
expressible as functions of the position coordi- 
nates r, 0, and 4. It is noted that n, rn, and v 
are known constants; v is a function of 8, but 
neither BT ~ O T  n can be expressed directly in terms 

The representation of BT. BT has two sources, 
the field from the earth's dipole Bo, and the 
field generated by currents flowing on the mag- 
netopause, BE. In  component form 

Of e, 4. 

EQUATOR CROSS 
SECTION 

Fig. 1. Coordinate system in which the shape 
of the magnetopause is determined. The dipole 
axis is always in the XY plane. cp = 0" defines 
the equatorial cross section, while cp = go", -90" 
define the northern and southern portions of the 
meridian cros  section, respectively. 

Bs is known analytically and is expressed as 
follows 

B G ,  = 7 [COS 0 ( 3 A   COS^ + B s b p )  
M 

+ 3 c  sin e cos 4 

+ ( B c o s ~ -  3 A s i n p ) s i n 8 s i n 4 ]  

B~~ = $ [ 3 c  cos e cos 4 + cos e sin 4 

- ( B   COS^ - 3 A  s i n p )  

- sin 0(3A cos p -I- B sin p)]  

B, = IM [cos 4(B cos p - 3 8  sin EL) r3 

- 3 c  sin $1 
where M is the dipole moment of the geomagnetic 
field and 

A = (cos I.L cos e - sin e sin 4 sin p) 

.(sin es in+ c o s p  + COS e s i n p )  

B = 3(sin e sin 4 COS p + cos e sin p)2 - 1 

c = sin e Cos4 

.(sin esin4 cosp + c o s e s i n p )  

The tilt angle, p, is the angle between the dipole 
axis and the Z axis. The dipole axis is alwags in 
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the XZ plane. Mead and Beard considered the 
case where the tilt angle is zero. Beard [1960] and 
Mead and Beard [1964] argued that although 
BT(B, = Bo + BB) is originally unknown (since 
BB cannot be computed until the shape of the 
magnetopause is known), it can be represented 
approximately by 2BG. Since BG is known an- 
alytically, this approximation satisfies the re- 
quirement that quantities appearing in the 
pressure balance equation must be functions 
of only the coordinates r, 8, (6. Using this ex- 
pression for B, and other information relating 
to n, it is possible to find a 'first surface'-a 
representation of the shape of the magnetopause. 

The representation of n. The normal vector 
n is not directly expressible in terms of the 
position coordinates since it depends upon the 
two partial derivatives (aR/d8) and (aR/a(6) 
which measure the rate of change in r along 
constant (6 and constant 8 contours, respectively. 
It is possible, however, to use finite difference 
formulas to express each derivative approxi- 
mately in terms of the values of r a t  the angular 
position (eo, (6,J where the pressure balance 
equation is being solved and at  two other ad- 
jacent values of (e, I$), e.g. 

where rF1 and r-z are adjacent points with the 
same (6 value as a t  r but different 6 values. 
Therefore, because of n, the pressure balance 
equation for a given angular position is dependent 
not only on the value of r a t  that position, but 
also on the values of r at adjacent grid points; 
the equation cannot be solved unless these other 
values of r have previously been determined. 
For perpendicular incidence (p = OO), the 'first 
surface' is determined by Mead and Beard [1964] 
as follows. 

DETERMINATION OF THE 'FIRST SURFACE' 
FOR p. = 0" 

At the subsolar point (the intersection of the 
earth-wind line with the magnetopause) both 
partial derivatives are zero since the surface is 
planar and perpendicular to T. Therefore, equa- 
tion 4 reduces t o  

Next, the adjacent point on the equator (e = 
5 O ,  (6 = OO), written (5O, 0"), is examined. Here, 

(aR/&$) is zero by symmetry. Also, by symmetry, 
it is known that the value of r on the equator 
a t  (5", 180") is the same as the r value being 
determined at (5", O"), and equation 4 can be 
solved. The third T value to be computed is the 
next one along the equator (lo', 0"). There, the 
pressure balance equation is immediately ex- 
pressible in terms of the r values at that grid 
point since the two previous values of r, needed 
to express (aR/a8) as a finite difference, have 
been previously calculated. Consequently, it 
is possible to determine the entire equator cross 
section for p = 0". The procedure can then be 
used to compute a ring of points (5", (6) centered 
on the subsolar point and eventually the entire 
surface. In fact, for p = Oo, the entire yrs t  sur]uce' 
can be determined one point at a time if three-point 
.finite diJerence formulas are used to represent 
(aR/d8) and (aR/8(6), , except in the antisolar 
region of the meridian, which will be discussed 
below. 

This, basically, is the procedure used by Mead 
and Beard. It is possible only because of the 
symmetry present when the tilt angle is zero. 
The difficulties encountered when the solar wind 
flow is not perpendicular to the geomagnetic 
dipole and the extensions that must be made to 
overcome them are now discussed. 

DETERMINATION OF 'FIRST SURFACES' 
FOR p # 0" 

The representation of B, is exactly the same 
as it was for p = 0". The representation of n, 
however, becomes much more complicated due 
to the diminished amount of symmetry present 
and the resulting lack of information on the 
partial derivatives. Along the equator both 
(aR/ae) and (aR/a(6) are unknown. Also, on 
the meridian there is no point where (8R/dB) is 
known (although (dRla(6) remains zero). Thus, 
there is no starting point on the surface where 
both partial derivatives are known. I t  is tlierefore 
necessary to solve the pressure balance equation 
simultaneously at seaerat points. It is convenient 
to begin the determination of the shape of 
the magnetopause along the meridian since 
(aRla(6) = 0 there. 

Meridian cross scction. Spreiter and Briggs 
have analytically determined the meridian cross 
sections in the 'first surface' approximation 
(BT = 2Bo) for all values of p .  They showed 
that the meridian is divided into three parts 
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separated by two singular points at which n is 
discontinuous (see Figure 2). It is therefore 
necessary to dctermine these three parts sepa- 
rately. The subsolar point and the two adjacent 
points (0", go"), (5", go"), ( 5 O ,  -goo), referred 
to as points 1, 2, and 3, respectively, are con- 
sidered first. The use of finite difference for- 
mulas to represent (aR/aO) at each of these three 
paints yields three pressure balance equations 

Fl(rl*, rz*, r3*) = 0 ,  

Fz(r1*, r2*, r3*) = 0 ,  

F3(r1*, r2*, r3*) = 0 
where the asterisks indicate the values of r that 
are roots of the pressure balance equations and 
the subscripts refer to the three points. At 
these points, first guesses r:), r2('), and r$) are 
made a t  the values of r (the superscripts refer 
to the number of the guess). A correction term 
p is added to each r value to yield improved 
estimates, r?' = r?) + p,"', etc. The values of 
p are determined by expanding the pressure 
balance equations in Taylor series and retaining 
only the linear terms 

Fig. 2. Determination of meridian cross section. 

Similar equations are obtained a t  points 2 and 
3. A system of linear equations results that can 
be solved for the P's. This process is repeated 
until the values of F become sufficiently small. 
F," + F,2 + F," < was required. The ftnal 
values of the r's are taken to be the roots of 
the pressure balance equations. The shape of 
the nose portion can then be determined out 
past the singular points ON and Os (shown in 
Figure 2 and computed by Spreiter and Briggs) 
one point a t  a time since the preceding two 
values of r needed to compute (aR/aO) are 
already known. 

To determine the shape of the north meridian 
beyond the northern singular point the pressure 
balance equation is again solved simultaneously 
at  three points (their 6 values all larger than 
ON). The initial guesses a t  the values of r are 
chosen so that they will be closer to the 'tail 
solution' than the 'nose solution.' (There are 
only two solutions to the pressure balance equa- 
tion along the meridian in the vicinity of the 
singular points; everywhere else there is only 
one. Spreiter's and Brigg's results give two sets 
of curves from which the proper cross sec- 
tions are selected by finding the appropriate 
integration constants. In  the present study, the 
condition of pressure balance is equivalent to 
their determination of the integration con- 
stants.) 

A similar procedure is used on the southern 
meridian. Having found the solutions a t  the 
three points on the north and south meridians, 
the remainder of the tail cross sections can 
then be determined one point at  a time. When 
this procedure is used for the p = 0" meridian, 
the pressure balance equation can be solved 
a t  every grid point on the first surface. 

Equatorial cross section. Once the meridian 
cross section has been determined, i t  is possi- 
ble to calculate the equatorial cross section by 
solving the pressure balance equation a t  three 
points a t  a time. If no information were avail- 
able from the meridian calculation, i t  would 
be necessary to solve the pressure balance 
equation simultaneously at nine points since 
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TABLE 1. First Surface r Values on the Equator 
for Various Tilts (v is constant and Ba is dependent 

on the tilt angle) 

Tilt Angle 

0 1.000 
20 1.013 
40 1.054 
60 1.130 
80 1.257 

100 1.470 
120 1.853 
140 2.661 
160 4.980 

10" 20" 

0.998 0.993 
1.011 1.007 
1.052 1.049 
1.130 1.129 
1.258 1.253 
1.471 1.467 
1.852 1.847 
2.660 2.650 
4.976 

neither (aR/a0) nor (dR/+) are known there. 
It is, however, necessary to solve equation 4 
simultaneously at  the three points (0, 5"), (0, 
O"), (0, -5") for all values of 0, since (aR/a+) 
is not known. (aR/a0) is also unknown but 
expressible as a function of the r value being 
determined and other previously determined 
values of r (constants). 

The first surface values of T along the equator 
are shown for various values of p in Table 1. For 
p = ZOO, no r values are given for 8 greater than 
140" since the pressure balance equations there 
did not possess roots. This may be attributed 
to error propagation as 8 increases and the 
approximation to BT used to find the first surface. 
No such problem existed for the 'second surface.' 
It is seen that the equatorial cross sections are 
almost independent of the tilt angle, p. Ex- 
amination of the pressure balance equation sug- 

gests that on the equator for a given value of 8, 
the dependence of T on the tilt angle is not large. 
However, it is not readily demonstrated that 
it is as independent of p as the results indicate. 

Remainder of the surface. Once either the 
meridian or equatorial cross section of the sur- 
faoe has been determined, it is possible to de- 
termine all remaining points on the surface. 
However, this can be done only with much 
computational effort. A less complicated yet 
sufficiently accurate approach is suggested by 
the following considerations. 

All of the r values for 0 = 90" lie in the 
Y-2 plane (see Figure 1). It is found for the 
zero tilt surface (which has been obtained by 
solving the pressure balance equation every- 
where) that the magnetopause cross section in 
the Y-2 plane can quite accurately be repre- 
sented by an ellipse. In this plane, the T values 
at the equator, r E ,  and on the northern and 
southern meridians, rN and r,, respectively, are 
always known and sufficient to specify the axis 
of the ellipse. It is therefore possible to deter- 
mine all of the remaining r values (for 8 = 90") 
by fitting an ellipse through ?-E, rN, and r,. For 
0 # 90" the values of r are found by fitting 
ellipses through the projections of TE,  rN, and r, 
(i.e., r E  sin 0, r, sin 0, r, sin 0)  onto the Y-Z 
plane. This procedure is used to obtain entire 
surfaces for y ranging from 0" t o  35" in 5" 
steps. 

HIGHER-ORDER SURFACES 

Once the shape of a first surface has been 
determined, the magnitude and direction of the 
currents flowing on it can readily be computed. 

TABLE 2. Geocentric Distances to the 'Second Surface' Representations of the Shape of the Magnetopause fora Tilt Angle of 0'. 
The distances are given in units of 10 RE for a 15 by 15 grid of (0.4) values. 

6, deg e = 0" 15" 30" 45' 60' 75" , 90" 105' 120' 135. 150" 1650 

-90 
-75 
-60 
-45 
-30 
-15 
0 
15 
30 
45 
60 
75 
90 

1.0725 
1 ,0725 
1.0725 
1.0725 
1.0725 
1.0725 
1.0725 
1.0725 
1.0725 
1.0725 
1.0725 
1 ,0725 
1.0725 

1.0766 
1.0764 
1.0760 
1.0754 
1.0748 
1 ,0743 
1.0741 
1.0743 
1 0748 
1.0754 
1.0760 
1.0764 
1.0766 

1.0655 
1.0675 
1.0730 
1.0806 
1 ,0884 
1.0942 
1.0963 
1.0942 
1.0884 
1.0806 
1.0730 
1.0675 
1.0655 

1.0494 
1 ,0547 
1.0698 
1.0914 
1.1143 
1 ,1321 
1 ,1388 
1 .I321 
1.1143 
1.0914 
1.0698 
1.0547 
1.0494 

1.0175 
1 ,0273 
1.0555 
1.0982 
1 ,1465 
1 .la62 
1.2018 
1 ,1862 
1.1465 
1.0982 
1.0555 
1.0273 
1.0175 

0.9470 
0.9621 
1.0075 
1.0814 
1 .I743 
1.2598 
1.2962 
1.2598 
1.1743 
1.0814 
1 ,0075 
0.9621 
0.9470 

1.2144 
1 ,2263 
1.2606 
1.3124 
1.3713 
1.4198 
1.4388 
1.4198 
1.3713 
1.3124 
1.2606 
1.2263 
1.2144 

1.5257 
1.5333 
1.5548 
1.5856 
1.6183 
1.6435 
1.6531 
1 ,6435 
1.6183 
1 ,5856 
1 ,5548 
1.5333 
1.5257 

1.9467 
1.9495 
1.9571 
1.9676 
1 ,9784 
1 ,9863 
1.9893 
1 .9863 
1 ,9784 
1.9676 
1.9571 
1.9495 
1.9467 

2.6045 
2 ,6023 
2.5963 
2.5881 
2.5800 
2.5741 
2.5720 
2.5741 
2.5800 
2 ,5881 
2.5963 
2 .6028 
2.6045 

3.8706 
3.8476 
3.7888 
3 7083 
3.6344 
3.5830 
3.5648 
3.5830 
3.6344 
3.7083 
3.7868 
3.8176 
3 .a706 

7.4383 
7.3923 
7.2709 
7.1142. 
6.9673 
6.8654 
6.8291 
6 3654 
6.9673 
7.1142 
7.2709 
7.3923 
7.4383 
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TABLE 3. Geocentric Distances to the 'Second Surface' Representations of theshape of the Magnetopause for a Tilt Angle of 10". 

The distsncea are given in units of 10 R, radii for a 15" by 15Ogrid of (8.4) values. 

+.deg 8 -0" 15' 30' 45' 60' 75" 90' 105' 120" 135' 150' 165" 

-90 1.0715 
-75 1.0715 
-60 1.0715 
-45 1.0715 
-30 1.0715 
-15 1.0715 

0 1.0715 
15 1.0715 

~ 3 0  1.0715 
45 1.0715 
60 1.0715 
75 1.0715 
90 1.0715 

1.0869 
1.0864 
1.0850 
1.0828 
1 0800 
1.0767 
1.0733 
1.0698 
I 0667 
1.0640 
1 ,0620 
1.0607 
1.0603 

1.0882 
1 .OS96 
1.0932 
1.0976 
1 .I007 
1 .I005 
1.0956 
1.0860 
1.0730 
1.0591 
1.0467 
1.0384 
1.0354 

1.0884 
1.0929 
1 ,1053 
I .  1220 
1 ,1373 
1.1445 
1 ,1384 
1.1182 
I .OS82 
1 0556 
1.0273 
1.0085 
1.0019 

1.0785 
1.0878 
1.1141 
1 ,1520 
1,1902 
1.2119 
1.2017 
1.1572 
1.0923 
1.0261 
0.9728 
0.9392 
0.9278 

1.0403 
1.0529 
1.0899 
1 1473 
1.2149 
1.2728 
1.2964 
1.2736 
1.2163 
1.1491 
1.0919 
1.0550 
1.0424 

1.1106 
1.1242 
1 ,1643 
1.2279 
1.3071 
1.3851 
1.4394 
1.4536 
1.4299 
1.3861 
1.3421 
1.3113 
1 ,3004 

1.4445 
1.4542 
1 ,4822 
1 ,5245 
1.5739 
1.6206 
1.6539 
1.6674 
1.6615 
1.6431 
1.6216 
1.6052 
1.5992 

1.8667 
1.8722 
1 ,8878 
1.9112 
1.9389 
1.9666 
1.9902 
2.0070 
2.0163 
2.0192 
2.0184 
2.0165 
2.0156 

2.5233 
2.5243 
2.5274 
2.5332 
2 ,5425 
2.5557 
2 ,5729 
2.5933 
2.6154 
2.6368 
2.6548 
2.6668 
2.6711 

3 .7800 
3.7621 
3.7150 
3.6550 
3 .BO09 
3.5680 
3.5656 
3.5968 
3.6581 
3 ,7390 
3.8219 
3.8828 
3.9084 

7.2363 
7.2027 
7.1141 
7.0010 
6 .a985 
6.8355 
6.8297 
6.8858 
7.0003 
7.1502 
7.3038 
7.4203 
7.4640 

( I  J I  = IBT1/4?r and J = (n x BT)/4?r where 
BT = 2BG on the first surface.) Using the Biot- 
Savart law, it is possible to integrate over the 
surface current system and a t  any point obtain 
BE, the magnetic field from these currents. In 
this integration the surface area elements are 
represented by trios of points forming triangles 
instead of using rectangles as was done pre- 
viously. (Three points define a planar arca, 
whereas four points may not.) The computational 
details are presented in Olson [1968]. BB is found 
at points just inside of the surface and then used 
in equation 4 to obtain a 'second surface;' i.e., 
a more accurate representation of the shape of 
the magnetopause. Here, the equatorial cross 
section was determined for all values of 8 and 
p. The procedure for the calculation of the 
higher-order surfaces is the same as for the 
second surfaces. Although it has been suggested 
that the discontinuity in n (mentioned pre- 

viously) gives rise to an infinite magnetic field 
component perpendicular to the surface [Beard, 
19641, the value of BB computed from both first 
and second surfaces is found to be well-behaved 
everywhere. 

The shapes of the 'second surfaces' are found 
to provide good representations of the shape of 
the magnetopause. They are given in tabular 
form (see Tables 2-5) in terms of the geocentric 
distances to various angular positions on the 
surface. These distances are given in units of 10 
R E  at a grid of 8,4 values for p = 0' to 35' in 5" 
intervals. The negative tilt angle surfaces are 
then found from symmetry conditions, r(8, 4, p)  
= T(4 -4, -PI. 

COMPARISONS AND CHECKS 
The predictions of the present model are 

compared with earlier results whenever possible. 
Spreiter and Briggs [1961] were able to obtain 

TABLE 4. Geocentric Distances to the 'Second Surface' Representations of the Shape of the Magnetopause for a T d t  Angle of 20' . 
The distances are given in units of 10 RB for 8 15' by 15 * grid of (8.4) values. 

+,deg e =0* 16' 30' 45" 60' 75" 90" 105' 120" 135' 150' 165' 

-90 
-75 
-60 
-45 
-30 
-15 

0 
15 
30 
45 
60 
75 
90 

1.0680 
1 .06m 
1 .OB80 
1 ,0680 
1.0680 
1.0680 
1.0680 
1 .Of380 
1 ,0680 
1.0680 
1 .Of380 
1.0680 
1.0680 

1.0852 
1.0849 
1.0841 
1.0824 
1.0795 
1.0754 
1.0699 
1.0634 
1.0565 
1.0499 
1.0445 
1.0409 
1.0397 

1.1032 
1.1044 
1 ,1072 
1 . IO98 
1 .  IO98 
1.1046 
1.0929 
1.0752 
1.0539 
1.0324 
1.0142 
1.0021 
0.9979 

1,1192 
1 ,1234 
1 ,1347 
1.1486 
1.1583 
1.1560 
1.1366 
1 .IO10 
1.0561 
1.0114 
0.9747 
0.9510 
0.9429 

1 ,1286 
1.1359 
1.1562 
1.1838 
1.2089 
1.2281 
1.2011 
1 ,1575 
1.0986 
1.0394 
0.9914 
0.9609 
0.9505 

1.1300 
1 ,1392 
1.1654 
1.2045 
1.2478 
1.2830 
1.2971 
1.2846 
1.2507 
1.2083 
1 .1699 
1.1439 
1 ,1348 

1.0912 
1.1048 
1.1449 
1 2094 
1.2911 
1.3754 
1.4413 
1.4712 
1.4639 
1.4335 
1.3985 
1 ,3726 
1.3632 

1.3342 
1.3470 
1.3846 
1.4436 
1.5172 
1 ,5933 
1.6567 
1.6952 
1.7059 
1.6960 
1 ,6779 
1.6623 
1.6564 

1 ,7638 
1.7731 
1 ,8001 
1.8416 
1.8925 
1.9457 
1.9936 
2 ,0304 
2.0534 
2 ,0643 
2.0669 
2.0662 
2.0655 

2.4149 
2.4207 
2.4375 
2.4640 
2.4979 
2.5364 
2.5765 
2.6150 
2.6493 
2.6774 
2 ,6980 
2.7106 
2.7148 

3 ,6522 
3.6415 
3.6139 
3.5806 
3 ,5550 
3.5487 
3 ,5689 
3.6178 
3.6914 
3.7795 
3.8653 
3.9287 
3.9522 

6.9630 
6.9440 
6 23952 
6 ,8370 
6.7943 
6 ,7882 
6.8324 
6.9304 
7.0749 
7 2460 
7.4119 
7.5340 
7.5791 
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TABLE 5. Geocentric Distances to the 'Second Surface' Representations of the Shape of the Magnetopause for a Tilt Angle of 30' 

The distances are given in units of 10 RE for a 15" by 15" grid of (e, 6) values. 

+.deg 0 =Oo 15' 30' 45' 60' 75' 90' €05' 120° 135' 150' 165' 

-90 
-75 
-60 
-45 
-30 
-15 
0 
15 
30 
45 
60 
75 
90 

1 ,0586 
1.0586 
1.0586 
1.0586 
1.0586 
1.0586 
1 .OS86 
1.0586 
1 ,0586 
1.0586 
1.0586 
1 ,0586 
1.0586 

1 .OS76 
1.0871 
1 .OS55 
1 .OS24 
1.0774 
1 ,0702 
1.0609 
1.0502 
1 ,0389 
1 ,0282 
1.0196 
1.0139 
1.0119 

1 .I128 
1.1139 
1 .I163 
1.1177 
1.1148 
1.1044 
1.0853 
1 ,0585 
1.0279 
0.9981 
0.9736 
0.9576 
0.9521 

1 ,1405 
1 ,1454 
1 :  1581 
1.1728 
1.1797 
1 .I679 
1.1310 
1.0729 
1 ,0059 
0.9435 
0.8950 
0.8649 
0.8548 

1.1686 
1 .I735 
1.1868 
1.2037 
1.2167 
1.2159 
1.1981 
1.1612 
1.1136 
1.0656 
1 ,0262 
1.0008 
0.9921 

1.1936 
1 ,1998 
1.2171 
1.2421 
1.2686 
1.2892 
1.2971 
1.2894 
1.2690 
1.2425 
1 2176 
1.2003 
1.1942 

analytically the first surface meridian cross 
sections for all tilt angles. A comparison of 
the two sets of results indicates that for all 
tilt angles the meridian cross sections are 
identical to four significant figures. Because of 
this, the first surface meridian values of r are 
not shown here. 

This excellent agreement suggests that the 
method used here is valid for all tilt angles and 
that the three-point finite difference formula 
used to represent (aR/aO) and the angular 
distances between grid points are appropriate 
and do not introduce appreciable errors. Also 
it shows, for all values of p, that the pressure 
balance equation can be solved a t  all points on 
the meridian including the antisolar portion. 

1.2067 
1.2168 
1.2461 
1.2915 
1.3465 
1.4013 
1.4442 
1.4668 
1.4684 
I ,4553 
1 ,4373 
1 ,4229 
1.4175 

1.2159 
1.2315 
1.2782 
1.3543 
1 ,4540 
1.5638 
1 ,6623 
1 .7282 
1 7535 
1 ,7475 
1 .7276 
1 7093 
1 .7022 

1.6526 
1 ,6659 
1 .7049 
1 ,7662 
1.8433 
1.9259 
2.0013 
2.0587 
2 ,0929 
2.1067 
2.1076 
2.1041 
2.1022 

2.2942 
2.3053 
2 3377 
2.3882 
2.4512 
2.5197 
2.5856 
2.6421 
2.6850 
2.7137 
2.7301 
2 ,7386 
2.7409 

3.5065 6.6545 
3.5043 6.6525 
3.4999 6 ,6503 
3.4987 6.6571 
3.5077 6.6849 

3.5786 6.8417 
3.6443 6.9762 
3.7257 7.13!)2 
3 8134 7.3124 
3.8935 7.4692 
3.9503 7.5798 
3.9709 7 6198 

3.5331 6.7444 

For p = 0" (see Table 3) the 'second sur- 
face' can be compared with the 'final surface' 
reported by Mead and Beard [1964] (see their 
Table 1, p. 1175). Along the equator, the differ- 
ences in the r values for 8 less than 150" are 
no more than 2% of the r values obtained by 
Mead and Beard. The differences in the me- 
ridian r values are also less than 2% for 0 less 
than 150", except in the region of the neutral 
points. Generally, the two surfaces are very 
similar in both size and shape. This agreement 
again indicates that the present method pro- 
vides an appropriate representation of the 
magnetopause surface. 

The accuracy of the ellipse fitting method was 
tested by comparing the surfaces obtained by 

TABLE 6. Comparison of T Values from Ellipse Fitting Model (EL) with Those Obtained 
by Solving the Pressure Balarce Equation Point by Point (PB) 

e = 5" e = 150 e = 250 e = 350 e = 450 

+, deg EL PB EL PB EL PB EL PB EL PB 

- 90 
-75 
- 60 
-45 
- 30 
- 15 

0 
15 
30 
45 
60 
75 
90 

0.988 
0.989 
0.991 
0.993 
0.996 
0.999 
1.001 
1.002 
1.001 
1.001 
0.999 
0.999 
0.998 

0.988 
0.988 
0.989 
0.990 
0.991 
0.993 
0.994 
0.995 
0.996 
0.997 
0.998 
0.998 
0.998 

0.978 
0.979 
0.983 
0.989 
0.996 
1.002 
1.007 
1.011 
1.012 
1.012 
1.011 
1.011 
1.010 

0.978 
0.979 
0.983 
0.988 
0.993 
0.998 
1.002 
1.005 
1.007 
1.008 
1.009 
I. 010 
1.010 

0.967 
0.970 
0.977 
0.988 
1.000 
1.011 
1.020 
1.025 
1.026 
1.025 
1.022 
1.019 
1.018 

0.967 
0.971 
0.979 
0.989 
0.999 
1.008 
1.015 
1.019 
1.021 
1.020 
1.019 
1.018 1.031 1.031 1.045 1.043 
1.018 1.030 1.030 1.041 1.041 
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Fig. 3. First and second surface meridian cross 
sections for various tilt angles. (First surface cross 
sections are identical to those obtained by Spreiter 
and Briggs 119611.) 

fitting ellipses with portions of the surfaces 
obtained by solving the pressure balance equa- 
tion point by point. An example of this com- 
parison is given for an intermediate tilt angle 
( p  = 20") in Table 6. 

It is observed that the r values predicted by 
the two methods never differ by more than 
0.06 Ro (less than 0.7% of the correct value 
of r ) ,  again indicating that the numerical pro- 
cedures used provide a good representation of 
the shape of the magnetopause. 

DESCRIPTION OF THE TILTED SURFACES 
General description. The inclusion of the 

boundary current field, BB, in the estimate of 
the total field, B,, in general causes the second 
surfaces to be slightly larger than the first. The 
subsolar point and meridian r values increase 
for all values of p by about 7%. As seen in 
Figure 3, the meridian r values also increase 
except in the vicinity of the neutral points. 

TABLE 7. Variation in the Subsolar Distance with 
Tilt Angle 

P, dog First Surface Second Surface 

0 I .  000 1.072 
5 1.000 1.072 

10 0.99s 1.072 
15 0.996 1,070 
20 0.993 1.068 
25 0.989 1.063 
30 0.985 1.059 
35 0.979 I. 045 - 

Cross sections of the tail for all tilt angles are 
not circular. A more detailed description follows. 

Subsolar point. It has been suggested that 
as the absolute value of the tilt angle increases, 
the geocentric distance to the subsolar point 
will increase by up to 12% [PateE and Dessler, 
19661, or decrease by up to 7% [Schield, 19691. 
In the present model the subsolar distance 
decreases with increasing tilt angle, thereby 
supporting Schield (see Table 7). However, the 
model suggests that the decrease in r (for p going 
from 0" to 35") will be under 3'35, less than half 
of Schield's prediction. 

That the subsolar distance should decrease 
with increasing tilt angle and a t  a rate less than 
that suggested by Schield can be seen by ex- 
amining the pressure balance equation (equation 
1). BT is the total field tangent to the mag- 
netopause at the subsolar point and in the first 
surface approximation is given by 2BG. In the 
coordinate system shown in Figure 4, Ba has 
components B, = -2M/rS sin p and B ,  = 
M/ra cos 1. BT consists of the projections of 
these components onto the magnetopause sur- 
face. They are B ,  cos [ and B,  sin E where ,$ is 
the angle between the earth-wind line (X axis) 
and the normal to the surface. After normal- 
ization equation 1 becomes 

r6 = cos' p + 4 sin p cos p tan E. 

+ 4 sin2 p t anz(  (8) 

For p = 3 5 O ,  [ is about 6", and the terms of 

I" 

x p o ' N ' / (  SUBSOLA A \ 
\ 

Fig. 4. Determination of the subsolar distance. 
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TABLE 8. Coordinates of the Neutral Points for 
Several Values of fi  

RN and Rs are in earth radii. 

Rs 

0 
5 

10 
15 
20 
25 
30 
35 

9.38 74.0 
9.27 70.1 
8.86 66.0 
8.67 62.8 
8.48 55.0 
8.29 51.2 
8.24 49.1 
8.21 44.7 

9.38 
9.54 
9.65 

10.28 
10.65 
11.31 
12.10 
12.68 

74.0 
78.3 
82.9 
88.0 
93.1 

100.0 
104.3 
109.1 

equation 8 are (in order) 

r6 = 0.6710 + 0.1975 + 0.0145 

Thus the term containing tan 4 is appreciable 
and accounts for the 3% instead of the 7% 
decrease. 

If the meridian cross section in the vicinity 
of the subsolar point remained circular for all 
p, f would be zero, and equation 8 would reduce 
to the form used by Schield. Simply using the 
total field 2B0 (not the portion of it parallel to 
the boundary) overestimates the pressure from 
Bo and incorrectly increases the boundary 
distance. 
Neutral points. As is seen in Figure 3, the 

discontinuity in the n"in the vicinity of the 
neutral points is larger on the second surface 
(when the field from the boundary currents is 
included in the estimate of BT), i.e., the neutral 
points are more indented. The geocentric dis- 
tances and angular positions of the neutral 
points are given in Table 8 for both first and 
second surfaces. The r values increase mono- 
tonically with increasing p for the southern 
neutral point to a ma+mum value of 12.68 rE for 
p = 35" and decrease to a minimum of 8.21 rE 
a t  p = 35" for the northern neutral point. The 
angular coordinates Os and 0, (see Figure 2) 
increase monotonically with p, whereas As and 
A,, the angular distances between the neutral 
points and the dipole axis, remain almost con- 
stant. 

For the second surface As varies between 15" 
and 17", and AN ranges from 16" at p = 0" 
down to 10" when p = 35". This dependence of 
h on p is much less than that for the first sur- 
face where X x  ranges from 19" to 12" and X g  

varies from 19" to 24". This suggests that the 
magnetic field line extending from the neutral 
points to the dipole origin always intersects 
the earth's surface at  almost the same latitude 
and does not vary appreciably with the tilt 
angle. 

Equator. The second surface equatorial 
cross sections show only a slight dependence on 
the tilt angle. They are from 5% to 8% larger 
than the corresponding first surface equatorial 
cross sections but almost identical to them in 
shape. 

Tail cross section. The geocentric distances 
to the boundary for 0 = 165" on the equator 
and the northern and southern branches of the 
meridian are given in Table 9. It is seen that 
for all values of p the boundary is no cylindri- 
cal but elongated in the direction perpendicular 
to the ecliptic ( X - Y )  plane. This is similar to 
the geometry observed by Behannon [1968]. 
Notice also that as the tilt angle increases 
(positively) the center of the tail cross section 
is raised above the ecliptic plane. This is the 
same as the direction the neutral sheet is ob- 
served to move as the tilt angle increases 
[Speiser and Ness, 19671. 

MAGNETIC FIELDS FROM MAGNETOPAUSE 
CURRENTS 

The field from the magnetopause currents, 
BB1 can be found anywhere within the mag- 
netopause. In particular, the field distribution 
at the earth's surface can be studied. However, 
near the earth, BB will be distorted by induction 
currents flowing within the earth and masked 
by the fields produced by ionospheric currents. 

TABLE 9. Variation of Cross-Sectional Shape of the Tail of 

AII distances (geocentric) are given in earth radii and are for 
the Magnetopause for Several Values of ~r 

0 = 165'. 

North South- 
Tilt Angle Meridian, Equator, Meridian, 
2, deg e = s12 e = o  e = -212 

0 74.39 
5 73 .70 

10 74.64 
15 75.19 
20 75.79 
25 76.11 
30 76.20 
35 76 .OO 

68 29 74 39 
68 29 73 36 
68 30 72 36 
68 31 71 04 
68 32 69 63 
68 37 68 07 
68 42 66 55 
88.68 64 75 
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At geosynchronous altitude, these problems 
should not occur. As magnetometer data become 
available from the geosynchronous satellite 
ATS 1, it will be possible to  test the model pre- 
sented here. It is expected that in the vicinity 
of the noon meridian the agreement will be 
good, whereas near the midnight meridian dif- 
ferences probably will occur as a result of the 
neutral sheet currents. 

SUMMARY AND CONCLUSIONS 
A model has been developed that represents 

the shape of the magnetopause for all angles 
of incidence of the solar wind upon the earth’s 
dipole axis. Although several assumptions are 
made in the model and further simplifications 
are employed in its development, the surfaces 
predicted by it are found to be in agreement 
with those obtained by other models whenever 
comparisons can be made. The entire second 
surface for y = 0” agrees well with the final 
surface obtained by Mead and Beard, whereas 
the first surface meridian cross sections are in 
excellent agreement with the results of Spreiter 
and Briggs. 

The equatorial cross sections are found to  be 
almost independent of the tilt angle, whereas 
the meridian cross sections are highly depen- 
dent upon the tilt angle. The positions of the 
neutral points vary with y and are significantly 
different from those predicted by the ‘zero 
tilt’ models. The shape of the magnetopause for 
various tilt angles is given in Tables 2-5. 
Geocentric distances are given in earth radii 
for a grid of (e ,  4 )  values. 

This model can be used to calculate quantita- 
tively the spatial distribution and temporal 
variations in the magnetic field produced by the 
magnetopause current system. It will predict 
seasonal variations in addition to yielding im- 
proved values for the daily variations. To the 
extent that these variations are important, and 
accuracy in the calculation of the magneto- 
spheric magnetic field is required, this model is 
a considerable improvement over the existing 
‘zero tilt’ models. 
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